

3058 Research Drive State College, Pennsylvania 16801 USA

Telephone: 814.272.1039 Fax: 814.272.1019

Analytical Report

Fluorochemical Characterization of Aqueous and Solid Samples

MPI Report No. L0018099

Testing Laboratory

MPI Research, Inc. 3058 Research Drive State College, PA 16801

Requester/Project Manager

Dena Haverland Dalton Utilities PO BOX 869 Dalton, GA 30722 Phone: 706-529-1010

1 Introduction

Results are reported for the analysis of water and solid samples received at MPI Research from Dalton Utilities. The MPI Research study number assigned to the project is L0018099. Table I lists the target analytes quantitated for the samples.

Table I. Target Analytes for Quantitation

Compound Name	Acronym
Perfluorobutyric Acid	C4 Acid
Perfluoropentanoic Acid	C5 Acid
Perfluorohexanoic Acid	C6 Acid
Perfluoroheptanoic Acid	C7 Acid
Perfluorooctanoic Acid	C8 Acid
Perfluorononanoic Acid	C9 Acid
Perfluorodecanoic Acid	C10 Acid
Perfluoroundecanoic Acid	C11 Acid
Perfluorododecanoic Acid	C12 Acid
Perfluorotridecanoic Acid	C13 Acid
Perfluorotetradecanoic Acid	C14 Acid
Perfluorobutanesulfonate	C4 Sulfonate or PFBS
Perfluorohexanesulfonate	C6 Sulfonate or PFHS
Perfluorooctanesulfonate	C8 Sulfonate or PFOS
Perfluorooctanesulfonamide	FOSA

2 Sample Receipt

A total of sixty samples were received from David White at Dalton Utilities for this study. The samples were collected between May 26, 2009 and May 28, 2009. The samples arrived on May 29, 2009 via FED Ex and were logged in under MPI Research login number L0018099. The shipment was received cooled with wet ice. The samples were stored refrigerated from receipt until analysis. Chain-of-custody information is presented in Attachment A.

3 Methods - Analytical and Preparatory

3.1 Water Sample Preparation

Ten milliliters of sample was transferred into a 50 mL centrifuge tube. Samples designated as lab spikes were fortified appropriately with analyte and surrogate. All samples were fortified with a 50 µL portion of a 100 ng/mL surrogate spiking solution containing PFOA (m+4). Ten milliliters of acetonitrile was added to the sample. After shaking, the sample was sonicated for approximately 2 hours then centrifuged at 3000 rpm for ~10 minutes. A 1 mL portion of the

supernatant was transferred to an autosampler vial and fortified with 20 μ L of a 25 ng/mL internal standard solution. The samples were then analyzed using electrospray LC/MS/MS.

3.2 Solid Sample Preparation

One gram of solid was measured into a 50 mL centrifuge tube. Samples designated as lab spikes were fortified appropriately with analyte and surrogate. All samples were fortified with a 40 μ L portion of a 100 ng/mL surrogate spiking solution of PFOA (m+4). Eight milliliters of 80:20 acetonitrile: water was added to the sample. After shaking, the sample was sonicated for approximately 2 hours then centrifuged at 3000 rpm for 10 minutes. A 1 mL portion of the supernatant was transferred to an autosampler vial and fortified with 20 μ L of a 25 ng/mL internal standard solution. The samples were then analyzed using electrospray LC/MS/MS.

3.3 Sample Analysis by LC/MS/MS

In High Pressure Liquid Chromatography (HPLC), an aliquot of extract is injected and passed through a liquid-phase chromatographic column. Based on the affinity of the analyte for the stationary phase in the column relative to the liquid mobile phase, the analyte is retained for a characteristic amount of time. Following HPLC separation, mass spectrometry provides a rapid and accurate means for analyzing a wide range of organic compounds. Molecules are ionized, fragmented, and detected. The ions characteristic of the compounds are observed and quantitated against calibration standards.

An HP1100 system interfaced to an Applied Biosystems API 5000 LC/MS/MS was used to analyze the sample extracts for quantitation. A gradient elution through a Phenomenex Luna 3µ C8(2) Mercury, 20 x 4.0 mm column was used for separation.

The following gradient was performed:

Mobile Phase (A):	2mM Ammonium Acetate in Water
Mobile Phase (B):	Methanol

<u>Time</u>	<u>%A</u>	<u>%B</u>
0.0	90	10
0.5	90	10
2.0	10	90
5.0	10	90
5.1	0	100
6.0	0	100
6.1	90	10
10.0	90	10

The following parameters were used for operation of the mass spectrometer:

Parameter	Setting
Ionization Mode	Electrospray
Polarity	Negative
Transitions Monitored	213→169 (C4 Acid)
	263→219 (C5 Acid)
	313→269 (C6 Acid)
	363-→319 (C7 Acid)
	413→369 (C8 Acid)
	463→419 (C9 Acid)
	513-→469 (C10 Acid)
	563→519 (C11 Acid)
	613→569 (C12 Acid)
	663→619 (C13 Acid)
	713→669 (C14 Acid)
	299→80 (PFBS)
	399→80 (PFHŚ)
	499→80 (PFOS)
	498→78 (FOSA)
	415→370 (Internal Std. ¹³ C PFOA (m+2))
	417→372 (Surrogate ¹³ C PFOA (m+4))
Gas Temperature	450°C

4 Analysis by LCMSMS

4.1 Calibration

For the water sample analysis, a 9-point calibration curve was analyzed throughout the analytical sequence for all compounds of interest. The calibration points were prepared at 0.0125, 0.025, 0.050, 0.100, 0.250, 0.500, 1.0, 2.5 and 5.0 ng/mL (ppb) each containing 0.5 ng/mL ¹³C-PFOA (m+2). For the solid sample analysis, an 8-point calibration curve was analyzed throughout the analytical sequence for all compounds of interest. The calibration points were prepared at 0.025, 0.050, 0.100, 0.250, 0.500, 1.0, 2.5 and 5.0 ng/mL (ppb) each containing 0.5 ng/mL ¹³C-PFOA (m+2). Standard preparation details can be found in Attachment D.

The ratio of the analyte concentration to the IS concentration versus the ratio of the analyte instrument response (area) to the IS response (area) was plotted for each point. Using linear regression with 1/x weighting, the slope, y-intercept and coefficient of determination (r^2) were determined. A calibration curve is acceptable if $r^2 \ge 0.985$.

For the results reported here, calibration criteria were met. The calibration curves are included in the raw data in Attachment C.

4.2 Surrogates

¹³C labeled-perfluorooctanoic acid (¹³C PFOA (m+4)) is used as a surrogate for the water and solid samples.

¹³C PFOA (m+4) recoveries can be found in Attachment B.

4.3 Laboratory Control Spikes

Laboratory control spikes in the analytical set were prepared during each extraction set by adding a known concentration of the analyte to laboratory reagents and/or controls. Laboratory control spikes are used to assess method accuracy. The laboratory control spikes must show recoveries between 70-130% or the data is rejected. For the results reported here, the laboratory control spikes were within the acceptable range. Laboratory control spike recoveries are given in Attachment B.

4.4 Matrix Spikes

Seven matrix spikes, five for water and two for solids, were prepared by adding a known concentration of the target analyte to a sample. Matrix spikes are used to assess method accuracy in the matrix. The matrix spikes should show recoveries between 70-130%. For the results reported here, the matrix spikes were within the acceptable range with the exceptions of:

L18099-19 (MW M10) Spk C at 0.5 ng/mL for C5 Acid, C7 Acid, C8 Acid, C10 Acid and C13 Acid, which gave high recoveries after two separate preparations.

L18099-32 (MW D6) Spk D at 0.5 ng/mL for C13 Acid, which gave high recoveries after two separate preparations.

L18099-41 (SP CA15) Spk C at 0.5 ng/mL for C6 Acid, and C8 Acid, which gave high recoveries after two separate preparations.

L18099-57 (River R1) Spk D at 0.5 ng/mL for C9 Acid, C12 Acid, and C13 Acid, which gave high recoveries after two separate preparations.

L18099-2 (AC 6 Soil) Spk C at 5.0 ng/mL for C11 Acid, which gave high recoveries after two separate preparations.

4.5 Laboratory Duplicates

Five water samples and two solid samples were prepared in duplicate and analyzed. Duplicate results are given along with the sample results in Attachment B.

5 Data Summary

Please see Attachment B for a detailed listing of the analytical results. For the water samples the results are reported in parts per billion (ng/mL) on an as-received basis. For the solid samples, the results are reported in parts per billion (ng/g), on a dry-weight basis.

6 Data/Sample Retention

Samples are disposed of 60 days after the report is issued unless otherwise specified by the project manager. All electronic data is archived on retrievable media and hard copy reports are stored in data folders maintained by MPI Research. Hardcopy data is stored for a minimum of five years. The client will be notified 30 days prior to the disposal of hardcopy data.

7 Attachments

- 7.1 Attachment A: Chain of Custody
- 7.2 Attachment B: Analytical Results
- 7.3 Attachment C: Raw Analytical Data for Water
- 7.4 Attachment D: Raw Analytical Data for Solids

8 Signatures

M.M.Mhy	6-26-09
Mark Neeley, Research Chemist Associate II	Date '
Nauresha	06/29/09
Karen Risha, Manager, Analytical	Date '

Other Lab Members Contributing to Data: Sarah Coghlan Sharareh Zolghadr

State College, Pennsylvania 16801 USA

Telephone: 814.272.1039

Fax: 814.272.1019

Summary of Fluorochemical Residues in Water Samples

	<u>-</u>				
	C4 Acid	C5 Acid	C6 Acid	C7 Acid	C8 Acid
	Perfluorobutyric Acid	Perfluoropentanoic Acid	Perfluorohexanoic Acid	Perfluoroheptanoic Acid	Perfluorooctanoic Acid
	Analyte	Analyte	Analyte	Analyt e Found	Analyte Found
Samuela ID	Found	Found	Found (ng/mL, ppb)	(ng/mL, ppb)	(ng/mL, ppb)
Sample ID	(ng/mL, ppb) ND	(ng/mL, ppb) 0.0373	0.0498	ND	ND
MW M10	ND	0.0586	0.0614	NQ	ND
MW M10*		0.427	0.574	0.154	0.287
MW M11	0.173	4.58	2.44	0.564	0.512
MW M9	1.01	0.909	0.713	0.472	1.10
MW D2	0.275		0.426	0.295	0.604
MW M1	0.0993	0.411	0.420 NQ	ND	ND
MW U1	ND 0.054	0.0278	0,380	0.161	0.228
MW D3	0.251	0.664	0.487	0.387	1.21
MW D1	0.0950	0.434		1.35	2.87
MW M5	0.529	1.90	1.98	0.145	0.331
MW M6A	0.0515	0.171	0.148	2.01	4.40
MW M17	1.38	3.10	2.36		2.44
MW M14,	0,681	3.28	3.01	1.50	4.41
MW M13	0.931	3.62	3.42	2.45	2.73
MW D6	0.550	1.92	1.680	1.13	2.60
MW D6*	0.447	1.68	1.640	1.01	
MW D4	0.759	2.49	2.54	1.95	4.16
MW M3	0.0318	0.139	0.0613	ND	ND
MW M7	0.414	1.82	1.69	0,906	1.71
MW M2	0.959	2.13	0.397	NQ	ND
MW M8	0.381	0.885	0.868	0.421	1.08
MW M12	0.749	2.68	2.28	1.51	2.97
SP AC5	0.566	1.26	0.746	0.309	0.479
SP BA2	0.665	1.37	0.811	0.328	0.469
SP BA2*	0.742	1.47	0.963	0.341	0.539
SP CA15	0.684	1.45	0.723	0.261	0.509
SP CA15*	0.805	1.58	1.04	0.306	0.658
SP AC2	0.609	1.40	0.797	0.305	0.591
SP AC15	0.710	1.53	0.964	0.312	0.592
SP AC4	0.646	1.48	0.994	0.331	0.702
SP AC14	0.755	1.67	1.17	0.349	0.754
SP CB14A	0.869	1.77	0.935	0.314	0.692
SP CB12	0.751	1.43	0.749	0.274	0.531
SP BB9	0.785	1.50	0.763	0.260	0.568
SP BB13	0.761	1.52	0.767	0.270	0.565
SP CA2	0.776	1.43	0.709	0.275	0.527
SP CB3	0.903	1.69	0.878	0.316	0.615
SP BB12	0.998	1.80	1.13	0.358	0.755
SP BA4	0.839	1.57	0.824	0.305	0.566
MW D11	ND	ND	ND	ND	ND
MW D9	0.774	2.02	1.79	1.44	3.21
MW M4	0.530	2.50	2.25	1.48	3.89
River R1	0.530 ND	ND	ND	ND	ND
	ND ND	ND	ND	ND	ND
River R1*	i	0.184	0.188	0.112	0.358
River R2	0.0494		ND	ND	0.0310
River R3	ND 0.0400	0.0386	0.170	0.0822	0.266
River R4	0.0468	0.195	0.170	0.0022	0.200

^{*}Laboratory Duplicate

ND = Not detected = Response is below the LOD of 0.0125 ng/mL (ppb).

NQ = Not quantifiable = Response is between the LOD and the LOQ of 0.0250 ng/mL (ppb).

State College, Pennsylvania 16801 USA

Telephone: 814.272.1039

Fax: 814.272.1019

Summary of Fluorochemical Residues in Water Samples (continued)

	C9 Acid	C10 Acid	C11 Acid	C12 Acid	C13 Acid
	Perfluorononanoic Acid	Perfluorodecanoic Acid	Perfluoroundecanoic Acid	Perfluorododecanoic Acid	Perfluorotridecanoic Acid
	Analyte	Analyte	Analyte	Analyte	Analyte
Onmaria ID	Found	Found	Found (ng/mL, ppb)	Found (ng/mL, ppb)	Found (ng/mL, ppb)
Sample ID	(ng/mL, ppb)	(ng/mL, ppb) ND	(ngrint, ppb)	ND	ND
MW M10	ND		ND	ND	ND
MW M10*	ND a coop	ND	ND ND	ND	ND
MW M11	0.0308	ND ND	ND	ND	ND
MW M9	ND 0.404	0.0825	ND	ND	ND
MW D2	0.131	0.0825 ND	ND	ND	ND
MW M1	ND				ND
MW U1	ND	ND	ND	ND	
MW D3	ND	ND	ND	ND	ND
MW D1	0.104	0.128	ND	ND	ND ND
MW M5	0.449	0.0578	ND	ND	ND
MW M6A	0.0730	NQ	ND	ND	ND
MW M17	1.17	0.856	0.137 ND	ND ND	ND ND
MW M14	0.129	ND 0.400	ND ND	ND	ND
MW M13	0.811	0.120	ND ND	ND	ND
MW D6	0.575	0.211	ND ND	ND	ND ND
MW D6*	0.497	0.190		ND 14D	ND
MW D4	0.543	0.0966 ND	ND ND	ND	ND
MW M3	ND				
MW M7	0.0940	0.0978	ND	ND	ND
MW M2	ND	ND	ND	ND	ND
MW M8	0.108	0.106	ND	ND	ND
MW M12	0.452	0.167	ND	ND	ND
SP AC5	0.104	0.227	0.109	ND	ND
SP BA2	0.0652	0.162	0.107	ND	ND
SP BA2*	0.0764	0.173	0.117	ND	ND
SP CA15	0.113	0.200	0.118	ND	ND
SP CA15*	0.120	0.225	0.141	ND	ND
SP AC2	0.127	0.246	0.164	ND.	NQ ND
SP AC15	0.0832	0.152	0.105	ND	ND
SP AC4	0.126	0.267	0.187	ND	NQ
SP AC14	0.137	0.233	0.172	ND	ND
SP CB14A	0.119	0.218	0.151	ND	ND
SP CB12	0.118	0.192	0.114	ND	ND
SP BB9	0.0984	0.180	0.107	ND	ND
SP BB13	0.103	0.194	0.119	ND	ND
SP CA2	0.107	0.194	0.106	ND	ND
SP CB3	0.108	0.186	0.108	ND	ND
SP BB12	0.132	0.254	0.159	ND	ND
SP BA4	0.108	0.208	0.118	ND	ND
MW D11	ND	ND	ND NB	ND	ND
MW D9	0.604	0.103	ND	ND	ND
MW M4	0.333	0.217	ND	ND	ND
River R1	ND	ND	ND	ND	ND
River R1*	ND	ND	ND	ND	ND
River R2	0.0646	0.0807	ND	ND	ND
River R3	ND	ND	ND	ND	ND
River R4	0.0504	0.0763	ND	ND	ND

^{*}Laboratory Duplicate

ND = Not detected = Response is below the LOD of 0.0125 ng/mL (ppb).

NQ = Not quantifiable = Response is between the LOD and the LOQ of 0.0250 ng/mL (ppb).

Summary of Fluorochemical Residues in Water Samples (continued)

	C14 AcId	PFBS	PFHS	PFOS	FOSA
	Perfluorotetradecanoic Acid		Perfluorohexanesulfonate		Perfluorooctane sulfonamide
	Analyte	Analyte	Analyte	Analyt e Found	Analyt e Found
Sample ID	Found (ng/mL, ppb)	Found (ng/mL, ppb)	Found (ng/mL, ppb)	(ng/mL, ppb)	(ng/mL, ppb)
MW M10	ND	0.145	ND	ND ·	ND
MW M10*	ND	0.143	ND	ND	ND
MW M11	ND	0.227	0.0362	0.152	ND
MW M9	ND	0.282	0.108	ND	ND
MW D2	ND	0.749	0.155	1.07	0.0429
	ND	0.180	0.159	0.451	ND
MW M1 MW U1	ND	ND	ND	ND	ND
MW D3	ND	0.281	0.0381	0.105	ND
MW D1	ND	0.588	0.263	1.98	ND
MW M5	ND	2.19	0.841	2.52	ND
	ND	0.454	NQ	0.127	ND
MW M6A		19.4	0.219	2.31	0.134
MW M17	ND		0.719	0.753	ND
MW M14	ND	0.698 2.49	1.00	2.18	ND
MW M13	ND	1.57	0.337	1.93	0.0842
MW D6	ND	1.42	0.279	1.83	0.0742
MW D6*	ND	4.36	0.958	3.35	ND
MW D4	ND	4.36 ND	0.956 ND	ND	ND
MW M3	ND	0.406	0.361	0.986	ND
MW M7	ND		ND	ND	ND
MW M2	ND	NQ	0.0695	0.479	ND
MW M8	ND	4.79	0.515	2.08	ND
MW M12	ND	1.62		0.287	0.0265
SP AC5	ND	1.24	ND	0.236	NQ
SP BA2	ND	1.10	NQ 0.0000	0.259	0.0277
SP BA2*	ND	1.23	0.0290	0.289	0.0321
SP CA15	ND	2.23	0.0594	0.248	0.0327
SP CA15*	ND	2.40	0.0682	0.350	0.0487
SP AC2	ND	1.38	0.0301	0.330	0.0259
SP AC15	ND	1.59	0.0390		0.0565
SP AC4	ND	1.59	0.0336	0.387	0.0513
SP AC14	ND	1.77	0.0430	0.380	
SP CB14A	ND	3.86	0.0417	0.336	0.0414
SP CB12	ND	3.21	0.0686	0.281	0.0269
SP BB9	ND	3.01	0.0439	0.275	0.0264
SP BB13	ND	2.92	0.0508	0.280	0.0291
SP CA2	ND	3.19	0.0690	0.277	0.0274
SP CB3	ND	3.66	0.0464	0.276	0.0253
SP BB12	ND	3.99	0.0833	0.382	0.0413
SP BA4	ND	3.18	0.0697	0.292	0.0319
MW D11	ND	ND	ND	NQ	ND
MW D9	ND	5.11	0.531	2.94	ND
MW M4	ND	0.641	1.00	5.15	0.0329
River R1	ND	NQ	ND	NQ	ND
River R1*	ND	NQ	ND	NQ	ND
River R2	ND	0.319	0.0484	0.665	0.0575
River R3	ND	NQ	ND	0.0477	ND
River R4	ND	0.295	0.0368	0.601	0.0442

*Laboratory Duplicate

ND = Not detected = Response is below the LOD of 0.0125 ng/mL (ppb).

NQ = Not quantifiable = Response is between the LOD and the LOQ of 0.0250 ng/mL (ppb).

State College, Pennsylvania 16801 USA

Telephone: 814.272.1039

Fax: 814.272.1019

Recovery Summary of Fluorochemical Residues in Water Samples

Sample Description	Amount Spiked (ng/mL)	Amt Found in Sample (ng/mL)	C4 Acid Amount Recovered (ng/mL)	Recovery (%)	Amt Found in Sample (ng/mL)	C6 Acid Amount Recovered (ng/mL)	Recovery (%)	Amt Found in Sample (ng/mL)	C6 Acid Amount Recovered (ng/mL)	Recovery (%)	Amt Found in Sample (ng/mL)	C7 Acid Amount Recovered (ng/mL)	Recovery (%)
Reagent Spike A (061809A) 0.05 ng/mL	0.05	ND	0.0541	108	ND	0.0581	116	ND	0.0800	120	ND	0.0582	116
Reagent Spike B (061809A) 0.5 ng/ml.	0.5	ND	0.408	82	ND	0.410	82	ND	0.393	79	ND	0.469	94
Reagent Spike A (061809B) 0.05 ng/ml.	0.05	ND	0.0557	111	ND	0.0480	96	ND	0.0848	129	ND	0.0489	98
Reagent Spike B (0\$1\$09B) 0,5 ng/mi.	0.5	ND	0.395	79	NĐ	0.398	80	ND	0.383	73	ND	0.463	93
Reagent Spike A (062309A) 0.05 ng/mL	0.05	-	**		-	**	**	ND	0.0531	106	-	-	**
Reagent Spike B (062309A) 0.5 ng/mi.	0.5	••	••	**	-	•	**	ND	0.498	99	*	-	**
MW M10 Matrix Spike (L18099-19 Spk C, 0.5 ng/mL Lab Spike)	0.5	ND	0.589	118	0.0373	0.733	139^	0.0498	0.694	129	ND	0.780	156^
MW D6 Matrix Spike (L18099-32 Spk D, 0.5 ng/mL Lab Spike)	0.5	0.550	0.923	75	1.92	2.33	82	1.68	2.14	92	1.13	1.65	104
SP BA2 Matrix Spike (L18099-40 Spk E, 0.5 ng/mL Lab Spike)	0.5	0.665	1.03	73	1.37	1.81	88	0.811	1.25	88	0.328	0.899	114
SP CA15 Matrix Spike (L18099-41 Spk C, 0.5 ng/mL Lab Spike)	0.5	0.684	1.16	95	1.45	2.02	114	0.723	1.46	147^	0.261	0.903	128
River R1 Matrix Spike (L18099-57 Spk D, 0.5 ng/mL Lab Spike)	0.5	ND	0.495	99	ND	0.581	118	ND	0.523	105	ND	0.644	129

Sample	Amount Spiked	Amt Found in Sample	C8 Acid Amount Recovered	Recovery	Amt Found in Sample	C9 Acid Amount Recovered	Recovery	Amt Found in Sample	C10 Acid Amount Recovered (ng/mL)	Recovery (%)	Amt Found In Sample (ng/mL)	C11 Acid Amount Recovered (ng/mL)	Recovery
Description	(ng/mL)	(ng/mi.)	(ng/mL)	(%)	(ng/mL)	(ng/mL)	(%)	(ng/mL)	(Hyrme)		(light)	(41.9.11.13)	1/2/
Reagent Spike A (061809A) 0.05 ng/ml.	0.05	ND	0.0569	114	ND	0.0812	. 122	ND	0.0486	97	ND	0.0602	120
Reagent Spike B (061809A) 0.5 ng/mi.	0.5	ND	0.395	79	ND	0.433	87	ND	0.435	87	ND	0.398	80
Reagent Spike A (061809B) 0.05 ng/mL	0.05	ND	0.0533	107	ND	0.0468	94	ND	0.0581	116	ND	0.0575	115
Reagent Spike B (061809B) 0.5 ng/mL	0,5	ND	0.397	79	ND	0.403	81	ND	0.417	83	ND	0,368	74
Reagent Spike A (062309A) 0.05 ng/mL	0.05	ND	0.0443	89		**	**		**	••	**	••	**
Reagent Spike B (062309A) 0.5 ng/mL	0.5	ND	0.589	118	AND NO.				A-14 (* . U.)				
MW M10 Matrix Spike (i_18099-19 Spk C, 0.5 ng/mL i.ab Spike)	0.5	ND	0.654	131^	ND	0.607	121	ND	0.688	137^	ND	0,600	120
MW D6 Matrix Spike (L18099-32 Spk D, 0.5 ng/ml. Lab Spike)	0.5	2,73	3.32	118	0.575	1.15	115	0.211	0.830	124	ND	0.505	101
SP BA2 Matrix Spike (L18099-40 Spk E, 0.5 ng/mL Lab Spike)	0.5	0.469	0.94	94	0.0652	0.555	98	0.162	0.744	116	0.107	0.585	96
SP CA15 Matrix Spike (L18099-41 Spk C, 0.5 ng/mL Lab Spike)	0.5	0.509	1.18	134^	0.113	0.671	112	0.200	0.765	113	0,118	0.728	122
River R1 Matrix Spike (L18099-57 Spk D, 0.5 ng/mL Lab Spike)	0,5	ND	0.610	122	ND	0.704	141^	ND	0.627	125	ND	0.620	124

ND = Not detected = Response is below the LOD of 0.0125 ng/mL.

NQ = Not quantifiable = Response is between the LOD and the LOQ of 0.0250 ng/mL.

"Analysis not required.

A Confirmation analysis was performed for the out of range recovery. The second analysis confirmed the high recovery, a matrix effect is suspected to be the cause.

State College, Pennsylvania 16801 USA

Telephone: 814.272.1039

Fax: 814.272.1019

Recovery Summary of Fluorochemical Residues in Water Samples (continued)

Sample Description	Amount Spiked (ng/mL)	Amt Found in Sample (ng/mL)	C12 Acid Amount Recovered (ng/mL)	Recovery (%)	Amt Found in Sample (ng/mL)	C13 Acid Amount Recovered (ng/mL)	Recovery (%)	Amt Found in Sample (ng/mL)	C14 Acid Amount Recovered (ng/mL)	Recovery (%)	Amt Found in Sample (ng/mL)	PFBS Amount Recovered (ng/mL)	Recovery (%)
Reagent Spike A (061809A) 0.05 ng/mL	0.05	ND	0.0574	115	ND	0.0513	103	ND	0.0647	129	ND	0.0546	109
Reagent Spike B (061809A) 0.5 ng/mL	0.5	ND	0.395	79	ND	0.427	85	ND	0.408	82	ND	0.442	88
Reagent Spike A (061809B) 0.05 ng/mL	0.05	ND	0.0606	121	ND	0.0580	116	ND	0.0518	104	ND	0.0652	130
Reagent Spike B (061809B) 0.5 ng/mL	0.5	ND	0.366	73	ND	0.390	78	ND	0.384	77	NĐ	0.393	79
Reagent Spike A (062309A) 0.05 ng/mL	0.05	••	**	**	**	•	-	**	••	**	ND	0.041	82
Reagent Spike B (062309A) 0.5 ng/mL	0.5	**	**	-	-	**			**	**	ND	0.516	103
MW M10 Matrix Spike (L18099-19 Spk C, 0.5 ng/ml. Lab Spike)	0.5	ND	0.641	128	ND	0.725	145^	ND	0.603	121	0.145	0.718	115
MW D6 Matrix Spike (L18099-32 Spk D, 0.5 ng/mL Lab Spike)	0.5	ΝĐ	0.577	115	ND	0.716	143^	ND	0.597	119	1.57	1.93	72
SP BA2 Matrix Spike (L18099-40 Spk E, 0.5 ng/mL Lab Spike)	0.5	ND	0.484	97	ND	0.607	121	ND GM	0.477	95	1.10	1.53	86
SP CA15 Matrix Spike (L18099-41 Spk C, 0.5 ng/mL Lab Spike)	0.5	ND	0.566	113	ND	0.572	114	ND	0.515	103	2.23	2.86	126
River R1 Matrix Spike (L18099-57 Spk D, 0.5 ng/mL Lab Spike)	0.5	ND	0.872	134^	DN	0.708	142^	ND	0.622	124	NQ	0.598	120

	0 5705-		PFHS			PF08			FOSA	_
Sample Description	Amount Spiked (ng/mL)	Amt Found in Sample (ng/mL)	Amount Recovered (ng/mL)	Recovery (%)	Amt Found in Sample (ng/mL)	Amount Recovered (ng/mL)	Recovery (%)	Amt Found in Sample (ng/mL)	Amount Recovered (ng/mL)	Recovery
Reagent Spike A (061809A) 0.05 ng/mL	0.05	ND	0.0568	114	ND	0.0514	103	ND	0.0541	108
Reagent Spike B (061809A) 0.5 ng/mL	0.5	ND	0.416	83	ND	0.407	81	ND	0.440	88
Reagent Spike A (061809B) 0.05 ng/mL	0.05	ND	0.0541	108	ND	0.0584	117	ND	0.0497	99
Reagent Spike B (061809B) 0,5 ng/mL	0.5	ND	0.413	83	ND	0.398	80	ND	0.401	80
Reagent Spike A (062309A) 0.05 ng/mL	0.05	-	**	**	ND	0.0432	86	**	**	***
Reagent Spike B (062309A) 0.5 ng/mL	0.5		: • : : · ·		ND	0.545	109		o • 10	••
MW M10 Matrix Spike (L18099-19 Spk C, 0.5 ng/mL Lab Spike)	0.5	ND	0.575	115	ND	0.585	117	ND	0.609	122
MW D6 Matrix Spike (L18099-32 Spk D, 0.5 ng/ml. Lab Spike)	0.5	0.337	0.783	89	1.93	2.47	108	0.0842	0.625	108
SP BA2 Matrix Spike (L18099-40 Spk E, 0.5 ng/mL Lab Spike)	0.5	NQ	0.415	53	0.236	0.632	79	NQ	0.470	94
SP CA15 Matrix Spike {L18099-41 Spk C, 0.5 ng/mL Lab Spike}	0.5	0.0594	0.515	91	0.289	0.779	98	0.0321	0.553	104
River R1 Matrix Spike (L18099-57 Spk D, 0.5 ng/mL Lab Spike)	0.5	ND	0.595	119	NQ	0.581	112	ND	0.650	130

ND = Not detected = Response is below the LOD of 0.0125 ng/mL.

NQ = Not quantifiable = Response is between the LOD and the LOQ of 0.0250 ng/mL.

**Analysis not required.

[^] Confirmation analysis was performed for the out of range recovery. The second analysis confirmed the high recovery, a matrix effect is suspected to be the cause.

State College, Pennsylvania 16801 USA

Telephone: 814.272.1039 Fax: 814.272.1019

Recovery Summary of ¹³C PFOA (m+4) in Water Samples

Client	MPI	Amount Spiked	Amount Recovered	Recovery	
Sample ID	Sample ID	(ng/mL, ppb)	(ng/mL, ppb)	(%)	
NA	Reagent Control (061809A)	0.50	0.616	123	
NA	Reagent Spike A (061809A)	0.05	0.0585	117	
NA	Reagent Spike B (061809A)	0.50	0.442	88	
NA	Reagent Control (061809B)	0.50	0.669	134	
NA	Reagent Spike A (061809B)	0.05	0.0497	99	
NA	Reagent Spike B (061809B)	0.50	0.452	90	
MW M10 Spike C	L18099-19 Spike C	0.50	0.638	128	
MW M10	L18099-19	0.50	0.597	119	
MW M10*	L18099-19 DUP	0.50	0.595	119	
MW M11	L18099-20	0.50	0.693	139	
MW M9	L18099-21	0.50	0.613	123	
MW D2	L18099-22	0.50	0.640	128	
MW M1	L18099-23	0.50	0.595	119	
MW U1	L18099-24	0.50	0.602	120	
MW D3	L18099-25	0.50	0.562	112	
MW D1	L18099-26	0.50	0.630	126	
MVV M5	L18099-27	0.50	0.636	127	
MVV M6A	L18099-28	0.50	0.619	124	
MW M17	L18099-29	0.50	0.603	121	
MW M14	L18099-30	0.50	0.640	128	
MW M13	L18099-31	0.50	0.664	133	
MW D6 Spike D	L18099-32 Spike D	0.50	0.625	125	
MW D6	L18099-32	0.50	0.673	135	
MW D6*	L18099-32 DUP	0.50	0.550	110	
MW D4	L18099-33	0.50	0.535	107	
MW M3	L18099-34	0.50	0.574	115	
MVV M7	L18099-35	0.50	0.533	107	
MW M2	L18099-36	0.50	0.522	104	
MW M8	L18099-37	0.50	0.561	112	
MW M12	L18099-38	0.50	0.580	116	
SP AC5	L18099-39	0.50	0.529	106	
SP BA2 Spike E	L18099-40 Spike E	0.50	0.586	117	
SP BA2	L18099-40	0.50	0.558	112	
SP BA2*	L18099-40 DUP	0.50	0.590	118	
SP CA15 Spike C	L18099-41 Spike C	0.50	0.619	124	
SP CA15	L18099-41	0.50	0.615	123	
SP CA15*	L18099-41 DUP	0.50	0.540	108	
SP AC2	L18099-42	0.50	0.565	113	
SP AC15	L18099-43	0.50	0.545	109	
SP AC4	L18099-44	0.50	0.564	113	
SP AC14	L18099-45	0.50	0.579	116	
SP CB14A	L18099-46	0.50	0.586	117	
SP CB12	L18099-47	0.50	0.577	115	
SP BB9	L18099-48	0.50	0.551	110	
SP BB13	L18099-49	0.50	0.517	103	
SP CA2	L18099-50	0.50	0.579	116	
SP CB3	L18099-51	0.50	0.680	136	
SP BB12	L18099-52	0.50	0.647	129	
SP BA4	L18099-53	0.50	0.611	122	
MW D11	L18099-54	0.50	0.606	121	
MW D9	L18099-55	0.50	0.645	129	
MW M4	L18099-56	0.50	0.623	125	
River R1 Spike D	L18099-57 Spike D	0.50	0.730	146	
River R1	L18099-57	0.50	0.604	121	
River R1*	L18099-57 DUP	0.50	0.689	138	
River R2	L18099-58	0.50	0.595	119	
River R3	L18099-59	0.50	0.628	126	
River R4	L18099-60	0.50	0.628	126	

^{*} Laboratory Duplicate

Summary of Fluorochemical Residues in Solid Samples

	C4 Acid	C5 Acid	C6 Acid	C7 Acid	C8 Acid Perfluorooctanoic Acid
Sample ID	Analyte Found (µg/kg)	Analyte Found (µg/kg) Dry Weight	Analyte Found (µg/kg) Dry Weight	Analyte Found (µg/kg) Dry Weight	Analyte Found (µg/kg) Dry Weight
	712	408	559	499	4420
AC 6 Soil	1.36	4.20	2.88	1.58	6.83
AC 6 Soil*	1.63	4.38	3.42	1.68	7.75
	2.44	6.79	4.68	1.59	8.64
BA 12 Soil	6.30	7.97	7.31	2.72	14.3
BB 13 Soil	4.48	15.6	11.0	6.58	21.3
CA 5 Soil	4.60	11.1	6.37	2.89	16.9
CA 12 Soil	3.43	11.6	7.76	3.36	12.2
CB 4 Soil	3.71	10.0	4.89	1.34	5.34
CB 14A Soil	7.37	32.3	21.5	8.75	29.7
BB 9 Soil	1.15	5.48	3.88	1.62	8.46
	1.89	3.95	3.77	2.18	16.7
CB 13 Soil	3.27	10.2	9.22	4.46	17.7
AC 13 Soil	1.30	8.94	5.43	2.36	7.36
BA 5 Soil	4.86	13.4	7.96	6.08	37.0
BB 12 Soil	3.90	12.3	7.45	3.27	12.8
	ND	224	157	ND	87.5
STP 2 Sludge*	ND	215	187	ND	81.3
STP 3 Sludge	ND	281	128	ND	68.2
STP 4 Sludge	152	415	190	33.8	134
	AC 6 Soil* BA 11 Soil BA 12 Soil BB 13 Soil CA 5 Soil CA 12 Soil CB 4 Soil CB 14A Soil BB 9 Soil CA 9B Soil CB 13 Soil AC 13 Soil BA 5 Soil BB 12 Soil STP 2 Sludge STP 2 Sludge	Perfluorobutyric Acid Analyte Found (µg/kg) Dry Weight	Perfluorobutyric Acid Perfluoropentanoic Acid Analyte Found (μg/kg) Dry Weight Analyte Found (μg/kg) Dry Weight Compost AC 6 Soil 712 408 AC 6 Soil* 1.36 4.20 AC 6 Soil* 1.63 4.38 BA 11 Soil 2.44 6.79 BA 12 Soil 6.30 7.97 BB 13 Soil 4.48 15.6 CA 5 Soil 4.60 11.1 CA 12 Soil 3.43 11.6 CB 4 Soil 3.71 10.0 CB 14A Soil 7.37 32.3 BB 9 Soil 1.15 5.48 CA 9B Soil 1.89 3.95 CB 13 Soil 3.27 10.2 AC 13 Soil 1.30 8.94 BA 5 Soil 4.86 13.4 BB 12 Soil 3.90 12.3 STP 2 Sludge ND 224 STP 2 Sludge* ND 215 STP 3 Sludge ND 281	Sample ID Analyte Found (μg/kg) Dry Weight Compost AC 6 Soil 712 408 559 AC 6 Soil* 1.36 4.20 2.88 AC 6 Soil* 1.63 4.38 3.42 BA 11 Soil 2.44 6.79 4.68 BA 12 Soil 6.30 7.97 7.31 BB 13 Soil 4.48 15.6 11.0 CA 5 Soil 4.60 11.1 6.37 CA 12 Soil 3.43 11.6 7.76 CB 4 Soil 3.71 10.0 4.89 CB 14A Soil 7.37 32.3 21.5 BB 9 Soil 1.15 5.48 3.88 CA 9B Soil 1.89 3.95 3.77 CB 13 Soil 3.27 10.2 9.22 AC 13 Soil 4.86 13.4 7.96 BB 12 Soil 3.90 12.3 7.45 STP 2 Sludge* <t< td=""><td>Sample ID Perfluorobutyric Acid Perfluoropentanoic Acid Perfluorohexanoic Acid Acid Analyte Found (µg/kg) Dry Weight Pound (µg/kg) Dry Weight Perfluorohexanoic Acid Perfluorohexanoic Acid Acid Perfluorohexanoic Acid Perfluorohexanoic Acid Perfluorohexanoic Acid Perfluorohexanoic Acid Perfluorohexanoic Acid Acid Perfluorohexanoic Acid <</td></t<>	Sample ID Perfluorobutyric Acid Perfluoropentanoic Acid Perfluorohexanoic Acid Acid Analyte Found (µg/kg) Dry Weight Pound (µg/kg) Dry Weight Perfluorohexanoic Acid Perfluorohexanoic Acid Acid Perfluorohexanoic Acid Perfluorohexanoic Acid Perfluorohexanoic Acid Perfluorohexanoic Acid Perfluorohexanoic Acid Acid Perfluorohexanoic Acid <

*Laboratory Duplicate

ND = Not Detected = Response below the LOQ of 0.2 µg/kg (wet weight).

Summary of Fluorochemical Residues in Solid Samples (continued)

	C9 Acid Perfluorononanoic Acid	C10 Acid Perfluorodecanolc Acid	C11 Acid Perfluoroundecanoic Acid	C12 Acid Perfluorododecanolc Acid	C13 Acid Perfluorotridecanoic Acid
Sample ID	Analyte Found (µg/kg) Dry Weight	Analyte Found (µg/kg) Dry Weight	Analyte Found (µg/kg) Dry Welght	Analyte Found (µg/kg) Dry Welght	Analyte Found (µg/kg) Dry Weight
Compost	681	3160	1400	654	441
AC 6 Soil	3.89	20.1	60.2	44.2	44.0
AC 6 Soil*	4.36	19.2	53.9	41.9	47.0
BA 11 Soil	5.44	48.6	117	53.2	47.4
BA 12 Soil	9.89	33.8	37.1	10.5	9.99
BB 13 Soil	17.8	93.7	433	109	282
CA 5 Soil	8.54	48.8	52.4	34.6	23.0
CA 12 Soil	7.96	40.4	124	59.7	96.3
CB 4 Soil	3.26	22.3	81.9	18.4	24.9
CB 14A Soil	19.2	70.6	16 4	105	166
BB 9 Soil	3.90	24.3	43.3	25.2	35.0
CA 9B Soil	9.34	44.0	39.3	26.2	16.9
CB 13 Soil	11.4	46.5	132	52.1	93.3
AC 13 Soil	3.33	16.6	50.5	33.5	37.5
BA 5 Soil	8.06	53.2	14.8	27.6	4.96
BB 12 Soil	12.6	58.9	123	41.0	83.6
STP 2 Sludge	ND	ND	93.2	ND	ND
STP 2 Sludge*	ND	ND	66.7	ND	ND
STP 3 Sludge	ND	92.1	102	ND	49.2
STP 4 Sludge	47.6	208	347	74.0	195

*Laboratory Duplicate

ND = Not Detected = Response below the LOQ of 0.2 μg/kg (wet weight)

Summary of Fluorochemical Residues in Solid Samples (continued)

		C14 Acid	PFBS	PFHS	PFOS	FOSA
		Perfluorotetradecanoic Acid	Perfluorobutanesulfonate	Perfluorohexanesulfonate	Perfluorooctanesulfonate	Perfluorooctane sulfonamide
	Sample ID	Analyte Found (µg/kg) Dry Weight	Analyte Found (µg/kg) Dry Welght	Analyte Found (µg/kg) Dry Weight	Analyte Found (µg/kg) Dry Weight	Analyte Found (µg/kg) Dry Weight
	Compost	129	1370	72.3	2500	108
	AC 6 Soil	22.7	4.56	0.589	67.7	188
	AC 6 Soil*	25.4	5.06	0.706	64.8	176
	BA 11 Soil	19.2	12.8	0.732	135	358
	BA 12 Soil	4.29	7.85	1.24	174	12.5
	BB 13 Soil	42.8	36.6	1.35	243	349
	CA 5 Soil	15.3	15.8	1.98	288	323
	CA 12 Soil	23.9	40.3	0.932	78.9	52.2
	CB 4 Soil	5.51	9.35	0.509	37.7	242
	CB 14A Soil	50.0	84.5	3.01	147	187
	BB 9 Soil	13.1	15.9	0.893	85.7	49.3
	CA 9B Soil	11.6	7.50	1.58	283	169
Da.	CB 13 Soil	37.5	15.3	2.00	144	166
	AC 13 Soil	19.0	6.81	0.671	46.6	332
	BA 5 Soil	6.83	1.87	1.99	178	32.6
	BB 12 Soil	17.5	24.0	0.975	153	66.3
	STP 2 Sludge	ND	74.3	ND	171	144
	STP 2 Sludge*	ND	82.4	ND	136	94.4
	STP 3 Sludge	ND	1290	ND	84.7	27.5
	STP 4 Sludge	ND	1940	ND	170	58.0

*Laboratory Duplicate

ND = Not Detected = Response below the LOQ of 0.2 µg/kg (wet weight)

State College, Pennsylvania 16801 USA

Telephone: 814.272.1039

Fax: 814.272.1019

Recovery Summary of Fluorochemical Residues in Solid Samples

			C4 Acid			C5 Acid			C6 Acid			C7 Acid	
Sample Description	Amount Spiked* (ng/mL)	Amt Found in Sample (ng/mL)	Amount Recovered (ng/mL)	Recovery (%)									
Reagent Spike A 0.05 ng/mL	0.05	ND	0.0364	73	ND	0.0454	91	ND	0.0542	108	ND	0.0444	89
Reagent Spike B 0.5 ng/mL	0.5	ND	0.441	88	ND	0.433	87	ND	0.437	87	ND	0.496	99
AC 6 Soil Matrix Spike (L18099-2 Spk C, 0.6 ng/mL Lab Spike)	0.5	0.122	0.811	98	0.377	0.742	73	0.259	0.761	100	0.142	0.598	91
AC 6 Soli Matrix Spike (L18099-2 Spk D, 5 ng/ml. Lab Spike)	5.0	**	**	••		**	••	••	**	••	-	•	**
STP 2 Sludge Matrix Spike (L18099-16 Spk E, 9.5 ng/ml. Lab Spike)	0.5	ND	0.356	71	0.0925	0.569	95	0.0648	0.613	110	ND	0.552	110

			C8 Acid			C9 Acid			C10 Acid			C11 Acid	
Semple Description	Amount Spiked* (ng/mL)	Amt Found in Sample (ng/mL)	Amount Recovered (ng/mL)	Recovery (%)									
Reagent Spike A 0.05 ng/mL	0.05	ND	0.0492	98	ND	0.0619	124	ND	0.0541	108	ND	0.0538	108
Reagent Spike B 0.5 ng/mL	0.5	ND	0.466	93	ND	0.517	103	ND	0.461	92	ND	0.502	100
AC 6 Soil Matrix Spike (L18099-2 Spk C, 9.5 ng/ml. Lab Spike)	0.5	0.613	1.26	129	0.349	0.916	113	1.81	2.36	110	-	**	**
AC 6 Soil Matrix Spike (L18899-2 Spk D, 6 ng/mL Lab Spike)	5.0	**	**	**	**	**	••	-	••		5.41	12.2	136^
STP 2 Sludge Matrix Spike (L18099-16 Spk E, 0.5 ng/mL Lab Spike)	0.5	0.0361	0.634	120	ND	0.504	101	ND	0.527	105	0.0384	0.562	105

			C12 Acid			C13 Acid			C14 Acid			PFBS	
Sample Description	Amount Spiked* (ng/ml.)	Amt Found in Sample (ng/mL)	Amount Recovered (ng/mL)	Recovery (%)	Amt Found in Sample (ng/mL)	Amount Recovered (ng/mL)	Recovery (%)	Amt Found in Sample (ng/ml.)	Amount Recovered (ng/mL)	Recovery (%)	Amt Found in Sample (ng/mL)	Amount Recovered (ng/mL)	Recovery (%)
Reagent Spike A 0.05 ng/mL	0.05	ND	0.0496	99	ND	0.0624	125	ND	0.0539	108	ND	0.0561	112
Reagent Spike B	0.5	ND	0.457	91 . :	. NĐ : :	: _0.470	94	ND	0.472	94	ND	0,408	82
AC 6 Solf Matrix Spike (L18098-2 Spit C, 6.5 ng/mt. Lab Spike)	0.5	3.96	4.47	102	**	••	••		**		0.409	1.04	128
AC 6 Soli Matrix Spike (L18099-2 Spk D, 5 ng/ml. Lab Spike)	5.0	••	**	**	3.95	9.50	111	2.04	7.94	118	••	-	**
STP 2 Sludge Matrix Spike	0.5	ND	0.408	82	ND	0.541	108	ND	0.595	119	0.0306	0.591	112
(L18099-16 Spit E, 0.5 ng/mL Lab Spike)													

			PFHS			PF08			FOSA	
Sample Description	Amount Spiked* (ng/mL)	Amt Found in Sample (ng/mL)	Amount Recovered (ng/mL)	Recovery (%)	Amt Found in Sample (ng/mL)	Amount Recovered (ng/mL)	Recovery (%)	Amt Found in Sample (ng/mL)	Amount Recovered (ng/mL)	Recovery (%)
Reagent Spike A 0.05 ng/mL	0.05	ND	0.0584	113	ND	0.0507	101	ND	0.0506	101
Reagent Spike B 0.5 ng/mL	0.5	ND	0.460	92	ND	0.448	90	ND	0.480	96
AC 6 Soil Matrix Spike (L18099-2 Spk C, 0.5 ng/mL Lab Spike)	0.5	0.0529	0.603	110			**	**	**	••
AC 6 Soil Matrix Spike (L18099-2 Spk D, 6 ng/ml, Lab Spike)	5.0	**	**	**	6.08	10.7	92	16.9	20.9	80
STP 2 Sludge Matrix Spike (£18099-16 Spk E, 0.6 ng/mL Lab Spike)	0.5	ND	0.492	98	0.0704	0.580	102	0.0595	0.522	93

ND = Not detected = Response less than 0.025 ng/mL.

*Spiking levels refer to the amount of analyte in the extracts.

*Analysis not required.

^ Confirmation analysis was performed for the out of range recovery. The second analysis confirmed the high recovery, a matrix effect is suspected to be the cause.

3058 Research Drive State College, Pennsylvania 16801 USA

Telephone: 814.272.1039 Fax: 814.272.1019

Recovery Summary of ¹³C PFOA (m+4) in Solid Samples

Client Sample ID	MPI Sample ID	Amount Spiked (ng/mL)	Amount Recovered (ng/mL)	Recovery (%)
NA	Reagent Control	0.50	0.832	166
NA	Reagent Spike A	0.05	0.0565	113
NA	Reagent Spike B	0.50	0.516	103
Compost	L18099-1	0.50	0.589	118
AC 6 Soil Matrix Spike	L18099-2 Spike C	0.50	0.733	147
AC 6 Soil Matrix Spike	L18099-2 Spike D	5.0	6.51	130
AC 6 Soil	L18099-2	0.50	0.650	130
AC 6 Soil*	L18099-2 DUP	0.50	0.670	134
BA 11 Soil	L18099-3	0.50	0.719	144
BA 12 Soil	L18099-4	0.50	0.726	145
BB 13 Soil	L18099-5	0.50	0.592	118
CA 5 Soil	L18099-6	0.50	0.656	131
CA 12 Soil	L18099-7	0.50	0.595	119
CB 4 Soil	L18099-8	0.50	0.634	127
CB 14A Soil	L18099-9	0.50	0.612	122
BB 9 Soil	L18099-10	0.50	0.643	129
CA 9B Soil	L18099-11	0.50	0.609	122
CB 13 Soil	L18099-12	0.50	0.616	123
AC 13 Soil	L18099-13	0.50	0.578	116
BA 5 Soil	L18099-14	0.50	0.612	122
BB 12 Soil	L18099-15	0.50	0.628	126
STP 2 Sludge Matrix Spike	L18099-16 Spike E	0.50	0.586	117
STP 2 Sludge	L18099-16	0.50	0.553	111
STP 2 Sludge*	L18099-16 DUP	0.50	0.568	114
STP 3 Sludge	L18099-17	0.50	0.564	113
STP 4 Sludge	L18099-18	0.50	0.605	121

^{*}Laboratory Duplicate

